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Abstract: We present a method for the analysis of meta-analytic functional imaging data. It is based on
Activation Likelihood Estimation (ALE) and subsequent model-based clustering using Gaussian mix-
ture models, expectation-maximization (EM) for model fitting, and the Bayesian Information Criterion
(BIC) for model selection. Our method facilitates the clustering of activation maxima from previously
performed imaging experiments in a hierarchical fashion. Regions with a high concentration of activa-
tion coordinates are first identified using ALE. Activation coordinates within these regions are then
subjected to model-based clustering for a more detailed cluster analysis. We demonstrate the useful-
ness of the method in a meta-analysis of 26 fMRI studies investigating the well-known Stroop para-
digm. Hum Brain Mapp 29:177–192, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Functional neuroimaging has become a powerful tool in
cognitive neuroscience, which enables us to investigate the
relationship between particular cortical activations and
cognitive tasks performed by a test subject or patient.
However, the rapidly growing number of imaging studies
still provides a quite variable picture, in particular of
higher-order brain functioning. Considerable variation can
be observed in the results of imaging experiments address-
ing even closely related experimental paradigms. The anal-
ysis of the consistency and convergence of results across

experiments is therefore a crucial prerequisite for correct
generalizations about human brain functions. This calls for
analysis techniques on a meta-level, i.e. methods that facil-
itate the post-hoc combination of results from independ-
ently performed imaging studies. Moreover, functional
neuroimaging is currently advancing from the simple
detection and localization of cortical activation to the
investigation of complex cognitive processes and associ-
ated functional relationships between cortical areas. Such
research questions can no longer be addressed by the iso-
lated analysis of single experiments alone, but necessitate
the consolidation of results across different cognitive tasks
and experimental paradigms. This again makes meta-anal-
yses an increasingly important part in the evaluation of
functional imaging results. Several methodological ap-
proaches to the automated meta-analysis of functional
imaging data have recently been proposed, for example,
by Turkeltaub et al. (2002); Chein et al. (2002); Nielsen and
Hansen (2004); Nielsen (2005); Neumann et al. (2005); Lan-
caster et al. (2005) and Laird et al. (2005a).
In coordinate-based meta-analyses activation coordinates

reported from independently performed imaging experi-
ments are analyzed in search of functional cortical areas that
are relevant for the investigated cognitive function. In this ar-
ticle we propose to apply a combination of Activation Likeli-
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hood Estimation (ALE) and model-based clustering to this
problem. The former is a form of kernel density estimation,
which was recently adapted for the automated meta-analysis
of functional imaging data (Chein et al., 2002; Turkeltaub
et al., 2002). The latter provides a general framework for find-
ing groups in data by formulating the clustering problem in
terms of the estimation of parameters in a finite mixture of
probability distributions (Everitt et al., 2001; Fraley and Raf-
tery, 2002). In the context of functional imaging, mixture mod-
eling has been used previously for the detection of brain acti-
vation in single-subject functional Magnetic Resonance Imag-
ing (fMRI) data. For example, Everitt and Bullmore (1999)
modeled a test statistic estimated at each voxel as mixture of
central and non-central w2 distributions. This approach was
extended by Hartvig and Jensen (2000) to account for the spa-
tial coherency of activated regions. Penny and Friston (2003)
used mixtures of General Linear Models in a spatio-temporal
analysis in order to find clusters of voxels showing task-
related activity.
The combination of model-based clustering and ALE pre-

sented in this article should be viewed as an extension
rather than a replacement of ALE, which is currently the
state-of-the-art approach to the meta-analysis of functional
imaging data. ALE is based on representing activation max-
ima from individual experiments by three-dimensional
Gaussian probability distributions from which activation
likelihood estimates for all voxels can be inferred. These esti-
mates are then compared to a null-distribution derived from
permutations of randomly placed activation maxima. Suc-
cessful application of ALE has been demonstrated by Chein
et al. (2002); Turkeltaub et al. (2002); Wager et al. (2004), and
by several authors contributing to Fox et al. (2005). How-
ever, one drawback of the method in its current form is its
strong dependency on the standard deviation of the Gaus-
sian. Choosing the standard deviation too small results in
many small activation foci which cover only a small part of
the original input data and do not carry significantly more
information than provided by the individual activation max-
ima alone. In contrast, using a large standard deviation
results in activation foci, which represent more of the origi-
nal activation maxima. However, as will be seen in our ex-
perimental data, the size of such foci can by far exceed the
extent of corresponding activations typically found in single
fMRI studies. Such ALE foci might thus comprise more than
one functional unit. This can be observed, in particular, in
studies with a very inhomogeneous distribution of activa-
tion coordinates. In this case a certain adaptiveness of the
method or a hierarchical approach would be desirable.
We propose to alleviate this problem by first applying

ALE to the original data and then subjecting activation
maxima lying within the resulting activation foci to further
clustering. Using a large standard deviation of the Gaussian
in the first step yields a new set of activation maxima from
which coordinates with no other activation maxima in their
vicinity are removed. The subsequent model-based cluster-
ing then explores the statistical distribution of the remain-
ing coordinates.

Model-based clustering assumes that the observed data are
generated by a finite mixture of underlying probability distri-
butions. Each probability distribution corresponds to a clus-
ter. Our particular implementation closely follows the gen-
eral model-based clustering approach proposed by Fraley
and Raftery (2002). This approach considers mixtures of mul-
tivariate Gaussians. Maximum likelihood estimation of the
mixture models is performed via the expectation-maximiza-
tion (EM) algorithm (Hartley, 1958; Dempster et al., 1977),
which determines the parameters of the mixture components
as well as the posterior probability for a data point to belong
to a specific component or cluster. Since a suitable initializa-
tion is critical in the successful application of EM, hierarchical
agglomerative clustering is performed as an initializing step.
Varying the parameterization of the covariance matrix of

a Gaussian mixture provides a set of models with different
geometric characteristics, reaching from spherical compo-
nents of equal shape and volume to ellipsoidal compo-
nents with variable shape, volume, and orientation (Ban-
field and Raftery, 1993). We use a set of 10 different
parameterizations. The best parameterization of the model
and the optimal number of clusters are determined using
the Bayesian Information Criterion (BIC) (Schwarz, 1978).
In the following, we provide the methodological back-

ground of ALE, Gaussian mixture models, and BIC for
model selection. We then present experimental data showing
the application of the method in a meta-analysis of 26 fMRI
experiments investigating the well-known Stroop paradigm.

METHODS

ALE

ALE, concurrently but independently developed by Tur-
keltaub et al. (2002) and Chein et al. (2002), was among the
first methods aimed at modeling cortical areas of activation
from meta-analytic imaging data. It was recently extended
by Laird et al. (2005a) to account for multiple comparisons
and to enable statistical comparisons between two or more
meta-analyses. Moreover, it has been used in combination
with replicator dynamics for the analysis of functional net-
works in meta-analytic functional imaging data (Neumann
et al., 2005). For the presented meta-analysis, ALE was
implemented as part of the software package LIPSIA (Loh-
mann et al., 2001).
In ALE, activation maxima are modeled by three-dimen-

sional Gaussian probability distributions centered at their
Talairach coordinates. Specifically, the probability that a
given activation maximum lies within a particular voxel is

p ¼ 1

ð2pÞ3=2s3
exp

�d2
2s2

� �
; ð1Þ

where s is the standard deviation of the distribution and d
is the Euclidean distance of the voxel to the activation
maximum. For each voxel, the union of these probabilities
calculated for all activation maxima yields the ALE. In
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regions with a relatively high density of reported activa-
tion maxima, voxels will be assigned a high ALE in con-
trast to regions where few and widely spaced activation
maxima have been reported.
From the resulting ALE maps, one can infer whether

activation maxima reported from different experiments are
likely to represent the same functional activation. A non-
parametric permutation test is utilized to test against the
null-hypothesis that the activation maxima are spread uni-
formly throughout the brain. Given some desired level of
significance a, ALE maps are thresholded at the 100(1�a)th
percentile of the null-distribution. Topologically connected
voxels with significant ALE values are then considered acti-
vated functional regions.
The extent and separability of the resulting regions crit-

ically depends on the choice of s in Eq. (1). As observed, for
example, by Derrfuss et al. (2005), decreasing s leads to
smaller regions of significant voxels and to an increase in the
number of discrete above threshold regions which, however,
represent only few of the original activation maxima. Increas-
ing s has the opposite effect with larger regions representing
more of the original data. Most commonly s is chosen to cor-
respond to the size of spatial filters typically applied to fMRI
data. In previously published ALE analyses (see Fox et al.
(2005) for some examples) we found s to vary between 9.4
and 10 mm FWHM, in rare cases 15 mm were used. In the
vast majority of analyses, the standard deviation of the Gaus-
sian was set to 10 mm FWHM. As we view ALE as a pre-
processing step to model-based clustering, the activation like-
lihood should not be estimated too conservatively. Therefore,
we use a relatively large standard deviation of s ¼ 5 mm,
corresponding to 11.8 mm FWHM.

Model-Based Clustering

ALE leads to a reduced list of activation maxima con-
taining only those maxima which have one or more other
maxima in their vicinity. These coordinates are then sub-
jected to clustering based on a finite mixture of probability
distributions. Here, we will closely follow the procedure
suggested by Fraley and Raftery (1998, 2002), who propose
a group of Gaussian mixture models, maximum likelihood
estimation via EM, hierarchical agglomeration as initial
clustering, and model and parameter selection via BIC. In
the following, the individual parts of the clustering proce-
dure are described in detail. These parts were imple-
mented for our application using the software package
MCLUST (Fraley and Raftery, 1999, 2003).

Gaussian Mixture Models

For n independent multivariate observations x ¼ (x1,
. . . , xn), the likelihood of a mixture model with M compo-
nents or clusters can be written as

TABLE I. Parameterization of the covariance matrices

Parameterization

Components

Shape Volume Orientation

a) Sk ¼ lI Equal Equal —
b) Sk ¼ lkI Equal Variable —
c) Sk ¼ lA Equal Equal Along the

coordinate axes
d) Sk ¼ lkA Equal Variable Along the

coordinate axes
e) Sk ¼ lkAk Variable Equal Along the

coordinate axes
f) Sk ¼ lkAk Variable Variable Along the

coordinate axes
g) Sk ¼ lDADT Equal Equal Equal
h) Sk ¼ lDkADkT Equal Equal Variable
i) Sk ¼ lkDkADkT Equal Variable Variable
k) Sk ¼ lkDkAkDkT Variable Variable Variable

The table shows the different parameterizations applied in model-
based clustering. It can be seen that Ak accounts for the shape of a
component, lk for its volume, and Dk for its orientation. Table
adapted from Table I in Fraley and Raftery (1999).

Lðu1; . . . ; uM; pjxÞ ¼
Yn
i¼1

XM
k¼1

pk fkðxijukÞ; ð2Þ

where fk is the density of the cluster k with parameter vec-
tor uk, and p ¼ (p1,. . .,pM) is the vector of mixing propor-
tions with pk � 0 and

P
k pk ¼ 1. Since any distribution

can be effectively approximated by a mixture of Gaussians
(Silverman, 1985; Scott, 1992), the probability density func-
tion is most commonly represented by

fkðxijmk;�kÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞdj�kj

q

� exp � 1

2
ðxi � mkÞTð�kÞ�1ðxi � mkÞ

� �
ð3Þ

for d-dimensional data with mean mk and covariance ma-
trix Sk. Geometrical features of the components can be var-
ied by parameterization of the covariance matrices Sk. Ban-
field and Raftery (1993) suggest various parameterizations
through the eigenvalue decomposition

�k ¼ lkDkAkD
T
k : ð4Þ

Dk is the matrix of eigenvectors, Ak is a diagonal matrix
with elements that are proportional to the eigenvalues of
Sk such that |Ak| ¼ 1, and lk is a scalar. Treating Dk, lk,
and Ak as independent parameters and keeping them ei-
ther constant or variable across clusters varies the shape,
volume, and orientation of the components. In the simplest
case Sk ¼ lI, all clusters are spherical and of equal size.
The least constraint case given in Eq. (4) accounts for ellip-
soidal clusters of variable shape, volume, and orientation.
All parameterizations available in MCLUST and applied to
our experimental data are presented in Table I. The first
two models have spherical, all other models have ellipsoi-
dal components, whereby components in models with di-
agonal covariance matrices (c–f) are oriented along the
coordinate axes. Models with identical matrix A for all
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components have equally shaped components, whereas
models with identical l for all components have compo-
nents of the same volume.

Maximum Likelihood Estimation

Maximum likelihood estimation of a Gaussian mixture
model as defined in Eqs. (2) and (3) can be performed via
the widely used EM algorithm, which provides a general
approach to parameter estimation in incomplete data prob-
lems (Dempster et al., 1977; Hartley, 1958; Neal and Hin-
ton, 1998). In general, given a likelihood function L(u|y) ¼
#i f (yi|u), for parameters u and data y ¼ (y1, . . . , yn), we
wish to find û such that

û ¼ argmax
u
LðujyÞ:

In the presence of some hidden data z such that y ¼ (x,z)
with x observed and z unobserved, we can equivalently
maximize the so-called complete-data log likelihood and
find û such that

û ¼ argmax
u

log Lðu; zjxÞ:

Starting from an initial guess, the EM algorithm proceeds
by alternately estimating the unobservable data z and the
unknown parameters u. Specifically, in the E-step, the
algorithm calculates the expected value of the complete-
data log likelihood with respect to z given x and the cur-
rent estimate of u. In the M-step, this expected value is
maximized in terms of u, keeping z fixed as computed in
the previous E-step.
In our application, the complete data y ¼ (y1, . . . , yn),

consists of yi ¼ (xi,zi) where each xi is a three-dimensional
vector containing coordinates of activation maxima in
Talairach space and zi ¼ (zi1,. . .,ziM) is the unknown mem-
bership of xi in one of the M clusters, i.e.

zik ¼ 1 xi belongs to cluster k
0 otherwise.

�

With the density of observation xi given zi written as
#k fk(xi|mk,Sk)

zik, the complete-data log likelihood in our
problem can be formulated as

‘ðmk;�k; pk; zikjyÞ ¼
Xn
i¼1

XM
k¼1

zik log pk fkðxijmk;�kÞ½ � ð5Þ

assuming that each zi is independently and identically dis-
tributed according to a multinomial distribution of one
draw from M categories with probabilities p1, . . ., pM (Fraley
and Raftery, 1998).
Maximum likelihood estimation is performed by alter-

nating between the calculation of zik given xi, mk, and Sk

(E-step) and maximizing Eq. (5) with respect to mk, Sk, and
pk with zik fixed (M-step). Mathematical details of the algo-
rithm are given in Appendix A. The EM algorithm termi-

nates after the difference between successive values of ‘
falls below some threshold e, which in our application was
set to e ¼ 0.00001. The value of zik at the maximum of
Eq. (5) is the estimated probability that xi belongs to clus-
ter k, and the maximum likelihood classification of xi is the
cluster k, with

k ¼ argmax
k

zik for k ¼ 1; . . . ;M:

Initialization by Hierarchical Agglomeration

Following the suggestion by Fraley and Raftery (1998),
we employ model-based hierarchical agglomeration pro-
vided in MCLUST as initializing partitioning method. This
method tends to yield reasonable clusterings in the ab-
sence of any information about a possible clustering inher-
ent in the data (Fraley and Raftery, 2002).
Hierarchical agglomeration techniques typically start

with a pre-defined number of clusters and in each step
merge the two closest clusters into a new cluster, thereby
reducing the number of clusters by one. The implementa-
tion used here starts with n clusters, each containing a sin-
gle observation xi. Then, two clusters are chosen such that
merging them increases the so-called classification likelihood,
given as

Cðu1; . . . ; uM; cjxÞ ¼
Yn
i¼1

fciðxijuciÞ; ð6Þ

with fk(xi) given in Eq. (3). The vector c ¼ (c1 , . . . , cn) enco-
des the classification of the data, i.e. ci ¼ k, if xi is classified
as member of cluster k. For an unrestricted covariance ma-
trix as defined in Eq. (4), approximately maximizing the
classification likelihood (6) amounts to minimizing

XM
k¼1

nk log
Wk

nk

����
����;

where nk is the number of elements in cluster k and Wk is
the within-cluster scattering matrix of cluster k as defined
in Eq. (8) in Appendix A (Banfield and Raftery, 1993).
Computational issues on this clustering procedure are dis-
cussed in detail by Banfield and Raftery (1993) and Fraley
(1998), in particular regarding the initial stages with a sin-
gle data point in each cluster, which leads to |W| ¼ 0.
From the values of c at the maximum of C, initializations

for the unknown membership values zik are derived, and
first estimates for the parameters of the Gaussian compo-
nents can be obtained from an M-step of the EM algorithm
as described in Appendix A.

Model Selection via BIC

A problem of most clustering techniques is to determine
the number of clusters inherent in the data. One common
technique in model-based clustering is to apply several
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models with different pre-defined numbers of components
and subsequently choose the best model according to
some model selection criterion. For models with equal
number of parameters, the simplest approach is to com-
pare estimated residual variances. This is not applicable,
however, when models with varying number of parame-
ters are considered.
An advantage of using mixture models for clustering is

that approximate Bayes factors can be used for model
selection. Bayes factors were developed originally as a
Bayesian approach to hypothesis testing by Jeffreys (1935,
1961). In the context of model comparison, a Bayes factor
describes the posterior odds for one model against another
given equal prior probabilities. It is determined from the
ratio of the integrated likelihoods of the models. In con-
junction with EM for maximum likelihood estimation, the
integrated likelihood of a model can be approximated
under certain regularity conditions by the BIC (Schwarz,
1978), which is defined as

BIC ¼ 2‘̂ðujxÞ �m logðnÞ; ð7Þ

where ‘̂ is the maximized mixture log likelihood of the
model, m is the number of independent parameters of the
model, and n the number of data points. With this defini-
tion, a large BIC value provides strong evidence for a
model and the associated number of clusters.
The relationship between Bayes factors and BIC, the regu-

larity conditions, and the use of Bayes factors for model com-
parison are discussed in more detail, e.g., by Kass and Raf-
tery (1995). They also provide guidelines for the strength of
evidence for or against some model: A difference of less than
2 between the BIC of two models corresponds to weak, a dif-
ference between 2 and 6 to positive, between 6 and 10 to
strong, and a difference greater than 10 to very strong evi-
dence for the model with the higher BIC value.

Putting Things Together

Taking together the individual parts described above, our
algorithm for deriving activated functional regions from
meta-analytic imaging data can be summarized as follows:

1. Given a list of coordinates encoding activation maxima
in Talairach space from a number of individual studies,
calculate ALEs for all voxels using a large standard
deviation of the Gaussian. Determine those coordinates
that fall within the regions above the ALE threshold.

2. Determine a maximum number of clusters M. Per-
form hierarchical agglomeration for up to M clusters
using the reduced coordinate list obtained in Step 1
as input, thereby approximately maximizing the clas-
sification likelihood as defined in Eq. (6).

3. For each parameterization and number of clusters of
the model as defined in Eq. (5) perform EM, using
the classification obtained in Step 2 as initialization.

4. Calculate the BIC for each parameterization and num-
ber of clusters in the model according to Eq. (7)

5. Choose the parameterization and number of clusters
with a decisive maximum BIC value as solution
according to the guidelines above.

Experimental Data

Our method was applied in a meta-analysis of 26 fMRI
experiments employing the well-known Stroop paradigm
(Stroop, 1935). A list of included studies is given in Ap-
pendix B. The Stroop paradigm is designed to investigate
interference effects in the processing of a stimulus while a
competing stimulus has to be suppressed. For example,
subjects are asked to name a color word, say ‘‘red,’’ which
is presented on a screen in the color it stands for (con-
gruent condition) or in a different color (incongruent con-
dition). Other variants of the Stroop paradigm include the
spatial word Stroop task (the word ‘‘above’’ is written
below a horizontal line), the counting Stroop task (the
word ‘‘two’’ appears three times on the screen) and the
object-color Stroop task (an object is presented in an atypi-
cal color, e.g. a blue lemon).
This particular paradigm was chosen as a test case for

our method, because the interference effect and the associ-
ated cortical activations are known to be produced very
reliably. Activations are most commonly reported in the
left inferior frontal region, the left inferior parietal region,
and the left and right anterior cingulate (Banich et al.,
2000; Liu et al., 2004; McKeown et al., 1998). Our own pre-
vious meta-analysis based on ALE and subsequent appli-
cation of replicator dynamics (Neumann et al., 2005)
revealed a frontal network including the presupplemen-
tory motor area (preSMA), the inferior frontal sulcus (IFS)
extending onto the middle frontal gyrus, the anterior
cingulate cortex (ACC) of both hemispheres, and the
inferior frontal junction area (IFJ). Other frequently
reported areas include frontopolar cortex, occipital
cortex, fusiform gyrus, and insula (Laird et al., 2005b;
Zysset et al., 2001).
Despite the high agreement in the reported activated

areas, the actual location of associated coordinates in
Talairach space differs widely between studies. For exam-
ple, the left IFJ was localized in previous studies at Talair-
ach coordinates x between �47 and �35, y between �4
and 10, and z between 27 and 40 (Brass et al., 2005; Derr-
fuss et al., 2004, 2005; Neumann et al., 2005). Such high
variability makes the classification of the data into distinct
functional units difficult.
We applied our analysis to data extracted from the

BrainMap database (Fox and Lancaster, 2002). This data-
base provides Talairach coordinates of activation maxima
from functional neuroimaging experiments covering a vari-
ety of experimental paradigms and imaging modalities. At
the time of writing the database contained over 27,500 acti-
vation coordinates reported in 790 papers.
Searching the database for fMRI experiments investigat-

ing the Stroop interference task resulted in 26 peer-
reviewed journal publications. Within these studies, 728
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Talairach coordinates for activation maxima were found.
The majority of these coordinates (550 out of 728) repre-
sented the Stroop interference effect, i.e. significant activa-
tion found for the contrasts incongruent � congruent,

incongruent � control, or incongruent þ congruent � con-
trol. As control condition, either the presentation of a neu-
tral object (e.g. ‘‘XXXX’’ instead of a color word) or a sim-
ple visual fixation were used. Fifty-five coordinates were

Figure 1.

(a) 728 activation coordinates which were included in the analy-

sis, projected onto three orthogonal single coronal, sagittal, and

axial slices. (b) Three example slices showing activation coordi-

nates projected onto an individual brain. Slices were chosen to

show cortical areas which are frequently reported as significantly

activated in the Stroop task (ACC, IFJ, preSMA). Activation

coordinates from the same study are plotted in the same color.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

Figure 2.

ALE maps derived from 728 activation coordinates reported for the Stroop paradigm. The ALE

map was thresholded at a ¼ 0.01% yielding a maximum ALE value of ALEmax ¼ 0.049. Axial

and sagittal slices correspond to the example slices shown in Figure 1b. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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marked as deactivation in the database, i.e. they represent
the contrast congruent � incongruent. The remaining coor-
dinates were reported to represent other contrasts such as
the contrast between different Stroop modalities or a con-
junction of Stroop interference, spatial interference, and
the Flanker task. Note that 26 coordinates came from a
meta-analysis on Stroop interference, nine coordinates rep-
resented the interference effect in pathological gamblers,
and all remaining coordinates were taken from group
studies with healthy subjects.
As the focus of our work is on the development of

meta-analysis tools rather than the investigation of the
Stroop paradigm, all 728 coordinates were subjected to the
subsequent analysis without any further selection. This not
only enabled us to test our method on a reasonably large
data set, it also introduced some ‘‘realistic’’ noise into our
data.
Plots of all coordinates projected onto a single axial, sagit-

tal, and coronal slice are shown in the top row of Figure 1.
Coordinates reported from different studies are repre-
sented by different colors. As can be seen, activation max-
ima are distributed over large parts of the cortex, although
some areas with a higher density of activation coordinates
are already apparent, in particular in the left lateral pre-
frontal cortex and the medial frontal cortex. These can be
seen more clearly in the example slices in the bottom row
of Figure 1.

Experimental Results

Activation coordinates were first subjected to an ALE
analysis with standard deviations of s ¼ 5 mm, corre-
sponding to 11.8 mm FWHM. The null distribution was
derived from 1,000 iterations of randomly placing 728 acti-
vation coordinates over a mask brain volume defined by
the minimum and maximum Talairach coordinates in the
original data set. The brain mask spanned a volume of
61,408 voxels, each 3 � 3 � 3 mm3 in size. As suggested
by Turkeltaub et al. (2002), the resulting ALE map was
thresholded at an a-level of a ¼ 0.01%. This corresponded
to an ALE threshold of 0.0156. Figure 2 shows sagittal and
axial example slices of the ALE map containing only vox-
els above threshold.
The ALE analysis yielded 13 regions of topologically

connected voxels above threshold, which covered a total
volume of 54,810 mm3 and contained 210 of the original
activation maxima. Table II shows size, maximum ALE
value, location of the center in Talairach space, and the
number of original activation coordinates covered by the
detected ALE regions.
Note that the four largest regions cover 89.65% (49,140

mm3) of the total ALE regions’ volume. They contain
83.8% of all above-threshold coordinates. This can be
explained by the very inhomogeneous distribution of the
original input coordinates: More than 40% of the original
activation maxima fell within regions spanned by the mini-
mum and maximum Talairach coordinates of the four larg-

est ALE regions. The remaining coordinates were distrib-
uted more evenly over other parts of the cortex.
Note further that some smaller regions surviving the

ALE threshold contain only single activation maxima.
This seems counterintuitive at first, as a single coordinate
should not result in a relatively high ALE value. How-
ever, imagine, for example, a situation where three coor-
dinates are arranged in a ‘‘row,’’ i.e. at three voxels in
the same row of a slice with one voxel between them.
The voxel in the middle will get a higher empirical ALE
value than the ones at both ends, as it has two other
coordinates in close distance (only two voxels away)
whereas the other two voxels have one coordinate in
close distance and another one four voxels further away.
Depending on the distribution of other coordinates,
thresholding the ALE values could now shape the sur-
viving ALE region such that only the coordinate in the
middle will be inside the region, whereas the value at
the other two voxels might just be too small to survive
the thresholding. Thus, ALE regions containing only a
single coordinate are caused by very small groups of
activation maxima that are quite isolated from the
remaining ones. The fact that some of our ALE regions
contain only a single coordinate indicates that all remain-
ing activation coordinates, not surviving the threshold-
ing, are very isolated from each other. They can therefore
be regarded as noise.
Despite the use of a very small a-level in ALE threshold-

ing, some of the determined ALE foci clearly exceed the
size of cortical activations typically found in these regions
for the Stroop paradigm (see, e.g. Zysset et al. (2001) for a
comparison). Moreover, as seen in Figure 2, within such
foci, in particular in the left prefrontal cortex, sub-maxima
of ALE values are visible, indicating a possible sub-cluster-

TABLE II. ALE regions obtained for 728

activation maxima

Volume Max ALE Location
Number of
coordinates

19,494 0.05 L(�44 6 33) 66
13,716 0.05 R(1 18 39) 49
9,882 0.04 R(43 9 30) 36
6,048 0.03 L(�41 �51 45) 25
3,105 0.03 L(�38 �72 3) 16
1,134 0.02 L(�47 �54 �3) 7
297 0.02 R(49 �45 30) 3
324 0.02 L(�5 36 �3) 2
297 0.02 R(46 �51 �6) 1
189 0.02 R(10 �60 15) 2
162 0.02 R(7 �75 �9) 1
81 0.02 R(19 48 21) 1
81 0.02 R(37 �72 �3) 1

The table shows ALE regions and the number of activation coor-
dinates falling within these regions as result of the ALE analysis
of 728 activation maxima representing 26 Stroop studies. Regions
are ordered by size.
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ing of the represented activation coordinates. All above-
threshold activation coordinates were therefore subjected
to model-based clustering as the second part of our
method.
Hierarchical agglomeration of the above-threshold coor-

dinates was first performed for up to 30 clusters. Using
the results as initialization for the EM algorithm, models
as defined in Eq. (5) with the parameterizations introduced
in Section Model-Based Clustering with up to 30 clusters
were then applied to the data set, and BIC values were cal-
culated for each number of clusters and parameterization.
The three models with lk ¼ l, i.e. models with compo-

nents of equal volume, outperformed the remaining
models, which all allowed for components of variable
volume. This seems counterintuitive at first, as a more
variable model would be expected to fit the data better
than a more restricted one. However, as described above,
the BIC value penalizes model complexity, which is
larger for models with variable components than for
models with equal components. Thus, for our data,
allowing the components’ volume to vary did not
increase the log likelihood of the models sufficiently in
order to justify the increased number of model parame-
ters. Note also that for very large cluster numbers, some
more variable models failed to provide a clustering due
to the singularity of the associated covariance matrices.
This was not the case for models with fewer free parame-
ters, however.
Figure 3 shows plots of the BIC values of the best three

models for up to 30 clusters. BIC values of these models
are very similar, in particular for models with more than
20 clusters. The right side shows an enlarged plot of the
BIC values for models with 20 up to 25 clusters. All three
models yielded the highest BIC value when applied with
24 clusters. The more complex models with ellipsoidal
components slightly outperformed the spherical one,

whereby the difference between a variable and a fixed ori-
entation of the components was negligible.
Figure 4 shows the results of the model-based clustering

exemplified for the two largest ALE regions, which were
situated in the left lateral prefrontal cortex (left LPFC) and
the medial frontal cortex (MFC), respectively (cf. Table II).
The categorization of activation coordinates within the left
LPFC is shown in five consecutive sagittal functional slices
at Talairach coordinates between x ¼ �34 and x ¼ �46.
The coordinates in this ALE region were subdivided into
five groups in anterior-posterior and superior-inferior
direction. In the most posterior and superior part of the
region a further division in lateral-medial direction can be
observed (shown in green and blue). Interestingly, cluster
centers of the more anterior and inferior clusters corre-
sponded closely to the sub-maxima in the ALE focus visi-
ble in Figure 2. However, the division of posterior and
superior parts of the region into two clusters could not
have been predicted from the ALE sub-maxima. The same
holds for the clustering of coordinates in the MFC, where
no sub-maxima could be observed in the ALE map. The
categorizations of coordinates in the MFC is shown in the
right panel of Figure 4 in four consecutive sagittal slices.
The best model provided four clusters, again dividing the
region in anterior-posterior and superior-inferior direction.
Thus, model-based clustering revealed some additional
structure in the data that would have remained undetected
when using ALE alone. To get some feeling for the actual
shape of the clusters and their relative location, the
extracted clusters are presented again in views from differ-
ent angles in Figure 5.
The robustness of our method against noisy input data

was tested in a post-hoc analysis including only the 550
activation coordinates that truly represented the Stroop in-
terference effect. The results did not significantly differ
from the results of the original analysis. The noise in the

Figure 3.

Plot of the BIC values of the best three models for up to 30 clusters (left) and enlarged plot of

the BIC values for the best three models with cluster numbers between 20 and 25 (right).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.

com.]
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original input data thus did not have a noteworthy impact
on the results of the model-based clustering.

DISCUSSION

ALE facilitates the detection of cortical activation from
activation maxima reported in independently performed
functional imaging studies. The resulting areas reflect the
distribution of activation maxima over the cortex. In par-
ticular, clusters of activation maxima in a region reflect the

likely involvement of this region in processing a cognitive
task, whereas isolated activation maxima are regarded as
noise.
Our analysis shows that the extent of ALE regions can

vary considerably due to the heterogeneous distribution of
the input data across different parts of the cortex. As seen
in Table II and Figure 2, the size of some ALE foci
obtained in the first step of our analysis by far exceeded
the extent of comparable activations reported in single
fMRI experiments. For example, activation maxima
reported by Zysset et al. (2001) for two separated activa-

Figure 4.

Left: Clustering results for the

largest ALE region (left LPFC),

shown in five consecutive sagit-

tal slices. The clustering yielded

five clusters (shown in green,

light blue, yellow, red, and blue),

dividing the region primarily in

anterior-posterior and superior-

inferior direction. The most pos-

terior and superior part of the

region was further divided in

lateral-medial direction. An addi-

tional cluster centered around

the left insula can be seen in

orange at x ¼ �34. These co-

ordinates were not part of the

largest ALE region. Right:

Results for the second largest

ALE region (MFC) shown in

four consecutive sagittal slices.

Clustering yielded four clusters

(blue, green, yellow, red), again

dividing the region in anterior-

posterior and superior-inferior

direction. Note that the single

coordinate shown in orange at

x ¼ �1 was not part of the sec-

ond largest ALE region. [Color

figure can be viewed in the

online issue, which is available at

www.interscience.wiley.com.]
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tions in the posterior (Tal: �38, 5, 30) and the anterior (Tal:
�38, 35, 5) inferior frontal sulcus are both located within
the same ALE region in our analysis. This is caused by the
high number of activation coordinates within this region
together with their high spatial variability. Moreover,
within the largest ALE focus located in the left LPFC, sub-
maxima could be observed, indicating a possible sub-clus-
tering of the region.
One simple way to separate several areas within such a

large ALE region would be the choice of a higher ALE
threshold. However, this is problematic if a whole brain
analysis is performed, since ALE values in other regions
might be significantly lower despite a high concentration
of activation coordinates. For example, in Figure 2b a clus-
ter of activation coordinates can clearly be seen in the an-
terior part of the left intraparietal sulcus. However, the
resulting ALE focus representing no less than 25 activation
coordinates has a maximum ALE value of only 0.027 in

comparison to 0.05 in the left LPFC. Thus, by simply
choosing a higher ALE threshold, some clusters of activa-
tion coordinates might remain undetected.
We tried to alleviate this problem by following a hier-

archical approach. In a first step, ALE is used to identify
regions with high concentration of activation coordinates.
In a second step, large ALE regions are further investi-
gated in search for a possible sub-division.
Applying this two-step procedure to activation maxima

from 26 Stroop experiments first resulted in relatively large
ALE regions, in particular in the frontal lobe (cf. Fig. 2). This
is in line with earlier findings on frontal lobe activity, in par-
ticular in a meta-analysis by Duncan and Owen (2000) who
reported cortical regions of large extent to be recruited by a
variety of cognitive tasks. However, in contrast to this study,
our analysis pointed to a possible further sub-clustering of
these areas. The two largest ALE regions found in the left
lateral prefrontal cortex and the medial frontal wall were

Figure 5.

Clustering results, on the left for the largest ALE region (left LPFC) and on the right for the sec-

ond largest ALE region (MFC). Clusters are shown in a sagittal view (top) corresponding to the

view in Figure 4 and twice turned around the y axis by a few degrees in order to visualize the

shape and separation of the clusters. Colors correspond to the colors in Figure 4. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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partitioned into five and four clusters, respectively. While
our exploratory analysis technique does not have the power
to associate specific cognitive functions to these clusters, this
finding could serve as a hypothesis for a further functional
specialization of these regions.
The main directions of the clustering were in parallel to

the coordinate axes, primarily in anterior-posterior and
superior-inferior direction. This corresponds well with
recent results from single-subject and group analyses
obtained from a variety of analysis techniques as well as
from other meta-analyses, see e.g. Neumann et al. (2006);
Forstmann et al. (2005); Koechlin et al. (2003); Müller et al.
(2003) for LPFC, and Forstmann et al. (2005) and Amodio
and Frith (2006) for MFC clustering.
It is important to be clear about the implicit assumptions

made in the application of our analysis technique. Meta-
analyses are aimed at consolidating results from several
studies in order to find general mechanisms related to a
particular task, class of paradigms, etc. Thus, if we want to
generalize the findings of any meta-analysis, we must
assume that the data extracted from the included studies
are a representative sample of all the data collected for the
investigated phenomenon. Note, however, that this must
be assumed in any empirical analysis relying on sampled
data. A second, closely related, assumption specific to clus-
tering activation coordinates is that the inherent distribu-
tion of activation for the investigated phenomenon is com-
pletely represented by the investigated data.
In a meta-analysis, these assumptions are sometimes

hard to meet because of the selective publication of activa-
tion coordinates from particular cortical regions, a problem
often referred to as ‘‘publication or literature bias.’’ In the
majority of experimental studies, only a specific aspect of a
paradigm or a particular cortical region are investigated
and, consequently, some significantly activated regions
found for a stimulus might be neglected in the publication
of the results. This can result in overemphasizing some
regions while neglecting others, which in turn can lead to
a nonrepresentative distribution of our input data. A care-
ful and informed selection of studies included in such an
analysis and the inclusion of as much data as possible is
thus indispensable.
For our example analysis we used a very large data set,

in order to reduce the effects of the publication bias. Note,
however, that our method also works for smaller analyses.
For very small numbers of activation maxima, the maxi-
mum number of clusters might have to be reduced, to
avoid singularity problems in the estimation of the covari-
ance matrix. Moreover, for very small or very homogene-
ously distributed data sets, the problem of very large ALE
regions might not arise in the first place. In this case, the
results of the model-based clustering should not differ sig-
nificantly from the application of ALE alone.
The clustering technique presented here is purely data-

driven. That is, the results are exclusively derived from the
spatial distribution of the input data and restricted only by
the constraints on the geometry of the mixture model com-

ponents. Here, additional constraints such as anatomical or
cytoarchitectonic boundaries between cortical regions are
conceivable. How such constraints can be incorporated into
the mathematical framework of mixture modeling is a ques-
tion that will be addressed in future work.
As noted earlier, in ALE the extent and number of above

threshold clusters critically depend on the choice of a suit-
able standard deviation of the Gaussian. Nielsen and Han-
sen (2002) offer an interesting approach to this problem by
optimizing the standard deviation of a Gaussian kernel
when modeling the relation between anatomical labels and
corresponding focus locations. Similar to ALE, activation
maxima are modeled by three-dimensional Gaussian prob-
ability distributions and the standard deviation is opti-
mized by leave-one-out cross validation (Nielsen and Han-
sen, 2002). In our hierarchical approach, the choice of s is
less critical and the use of a large standard deviation is
feasible, as ALE is used only as a pre-processing step for
model-based clustering. We can thus make use of as much
information present in the data as possible. Note that the
use of an even larger standard deviation did not have any
effect on the choice of activation coordinates entering the
second step of our analysis, although some ALE regions
were merged and slightly extended. The results of the
model-based clustering for a larger standard deviation
would therefore be identical to the results presented here
for s ¼ 5 mm.
A second parameter, influencing the outcome of an ALE

analysis, is the size of the mask volume used for deriving
the null-hypothesis. Clearly, the size of the volume has
some influence on the ALE threshold corresponding to the
desired a-level. Therefore, the mask volume chosen should
match the volume spanned by the empirical activation
maxima included in the analysis. In our example, the acti-
vation coordinates obtained from the database were dis-
tributed over the entire brain volume, including subcorti-
cal regions and even some white matter. We therefore
chose as a mask the entire volume of a brain, normalized
to the standard size provided by the software package LIP-
SIA (Lohmann et al., 2001). The distribution of the random
activation foci was then restricted to the area spanned by
the minimum and maximum Talairach coordinates of the
728 empirical maxima. Note, however, that the particular
choice of the mask volume is less critical than might
appear at first sight. This is due to the large ratio between
the empirical maxima and the number of voxels in the
mask (in our analysis 728 and 61,408 voxels, respectively).
For example, reducing the mask volume by 1/2 in our
example analysis would change the ALE threshold only
from 0.0156 to 0.018. The resulting thresholded ALE map
would still contain the vast majority of the activation max-
ima that exceed the threshold when the full mask volume
is used. This shows that slight variations in the mask vol-
ume do not significantly change the outcome of the subse-
quent model-based clustering.
Note that in our example data, ALE values were not cor-

rected for multiple comparison (Laird et al., 2005a). Rather,
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as suggested in the original work by Turkeltaub et al.
(2002), values were thresholded at a very small a-level of
0.01% (P ¼ 0.0001) to protect from family-wise Type I
errors. Correction was omitted for the sake of simplicity,
keeping in mind that (1) in our approach ALE serves as a
pre-processing step to model-based clustering and there-
fore should not be performed too conservatively, and (2)
the aim of model-based clustering is the sub-clustering of
large ALE foci which would in any case survive the cor-
rection procedure. Moreover, Laird and colleagues, when
introducing multiple comparison correction for ALE, com-
pared it to uncorrected thresholding with small thresholds
and observed: ‘‘It is clear that thresholding the ALE maps
at P < 0.0001 (uncorrected) produced results that most
closely matched the FDR-corrected results (Laird et al.,
2005a, p. 161).’’ This confirms our own empirical observation
that correcting ALE values, though statistically sound, in
practical terms often amounts to using a smaller threshold
without correction, as was done in the example provided
here. However, we wish to point out that model-based clus-
tering can in principle be applied to any activation coordi-
nates. Thus, there are no restrictions on using it in conjunc-
tion with ALE values corrected for multiple comparisons.
The second step of our analysis procedure pertains to

fitting Gaussian mixtures to the activation coordinates that
survived the ALE threshold in the first analysis step.
Although Gaussians are the most commonly used compo-
nents in mixture modeling, they have a well-known limita-
tion: Gaussian mixture models have a relatively high sensi-
tivity to outliers which can lead to an over-estimation of
the number of components (Svensén and Bishop, 2004).
However, we would argue that this is not a critical issue
in our particular application, since such outliers are
removed by ALE before the actual clustering.
Like in many clustering problems, the true number of

clusters for a given set of activation maxima is not known
in advance. This can be problematic as most clustering
techniques require the number of clusters to be pre-speci-
fied. In the model-based clustering approach suggested
here, this problem is solved by fitting a set of models with
different numbers of clusters to the data and applying a
model selection criterion afterwards. The use of the BIC as
model selection criterion allows us to select the best num-
ber of clusters and the model parameterization simultane-
ously. Like most model selection criteria, the BIC follows
the principle of Occam’s razor and favors from two or
more candidate models the model that fits the data suffi-
ciently well in the least complex way. In our context, this
idea can be expressed formally using the estimated log
likelihood of the models and a fixed penalizing term
encoding the number of parameters of each model. Here,
alternative approaches such as the Akaike Information Cri-
terion (AIC) (Akaike, 1973) or the Deviance Information
Criterion (DIC) (Spiegelhalter et al., 2002) are conceivable.
AIC, for example, is strongly related to BIC as it only dif-
fers in the simpler penalty term 2 m (cf. Eq. 7). This means,
however, that for large sample sizes, AIC tends to favor

more complex models compared to BIC. Other conceivable
strategies include model selection procedures based on
data-driven rather than fixed penalty terms (e.g. Shen and
Ye, 2002), or stochastic methods which allow an automatic
determination of the number of components in the process
of modelling (e.g. Abd-Almageed et al., 2005; Richardson
and Green, 1997; Svensén and Bishop, 2004). The applica-
tion of different model selection criteria and their influence
on the result of the clustering will be one direction of
future research.
Finally, note the relationship of different parameteriza-

tions of the Gaussians to other clustering criteria. For
example, for the spherical model Sk ¼ lI, maximizing the
complete-data log likelihood in Eq. (5) refers to minimizing
the standard k-means clustering criterion tr(W) where W is
the within-cluster scatter matrix as defined in Eq. (A1) and
Eq. (A2) in Appendix A. Maximizing the likelihood of the
ellipsoidal model Sk ¼ lDADT is related to the minimiza-
tion of det(W). Thus, allowing the parameterization of the
covariance matrices to vary, model-based clustering
encompasses and generalizes a number of classical cluster-
ing procedures.1 The general problems of choosing an
appropriate clustering technique and the optimal number
of clusters are then formulated as model selection problem
(Fraley and Raftery, 2002).

CONCLUSION

We have presented a new method for the coordinate-
based meta-analysis of functional imaging data that facili-
tates the clustering of activation maxima obtained from in-
dependently performed imaging studies. The method pro-
vides an extension to ALE and overcomes two of its draw-
backs: the strong dependency of the results on the chosen
standard deviation of the Gaussian and the relatively large
extent of some ALE regions for very inhomogeneously dis-
tributed input data. When applied in a meta-analysis of 26
comparable fMRI experiments, the method resulted in
functional regions that correspond well with the literature.
Further developments of our method could include the
use of different model selection criteria and further con-
straints on the model components incorporating additional
anatomical or cytoarchitectonic information.
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APPENDIX A

EM for Gaussian mixture models

Given a Gaussian mixture model for incomplete data as
defined in Eqs. (3) and (5), maximum likelihood estimation
via the EM algorithm is performed by alternating between
the two following steps until some convergence criterion is
met:

E-step

zik  pkfkðxijmk;�kÞPM
j¼1 pjfjðxijmj;�jÞ

:

M-step

pk  nk
n

mk ¼
1

nk

Xn
i¼1

zikxi

with

nk  
Xn
i¼1

zik:

The calculation of Sk in the M-step depends on the param-
eterization and differs for the investigated models. Let Wk

be the within-cluster scattering matrix of cluster k

Wk ¼
Xn
i¼1

zikðxi � mkÞðxi � mkÞT ðA1Þ

and

W ¼
XM
k¼1

Wk: ðA2Þ

Then, the covariance matrices of the densities are calcu-
lated as follows (for details see Celeux and Govaert 1995).

aÞ Model �k ¼ lI: l ¼ traceðWÞ
dn

:

bÞ Model �k ¼ lkI: lk ¼ traceðWkÞ
dnk

:

cÞ Model �k ¼ lA: A ¼ diagðWÞ
jdiagðWÞj1d

l ¼ jdiagðWÞj
1
d

n
:

dÞ Model �k ¼ lkA: A ¼
diag

PM
k¼1

Wk

lk

� 	

diag
PM

k¼1
Wk

lk

� 	��� ���1d

lk ¼ traceðWkA
�1Þ

dnk
:

eÞ Model �k ¼ lAk: Ak ¼ diagðWkÞ
jdiagðWkÞj

1
d

l ¼
PM

k¼1 jdiagðWkÞj
1
d

n
:

fÞ Model �k ¼ lkAk: Ak ¼ diagðWkÞ
jdiagðWkÞj

1
d

lk ¼ jdiagðWkÞj
1
d

nk
:

g


Model �k ¼ lDADT: �k ¼ W

n
:

hÞ Model �k ¼ lDkAD
T
k :

Given the eigenvalue decomposition Wk ¼ LkOkLk
T with

eigenvalues in Ok in decreasing order,

A ¼
PM

k¼1 �k

jPM
k¼1 �kj

1
d

l ¼ j
PM

k¼1 �kj
1
d

n
:

iÞ Model �k ¼ lkDkAD
T
k :

Given the eigenvalue decomposition Wk ¼ LkOkLk
T with

eigenvalues in Ok in decreasing order,

A ¼
PM

k¼1
�k

lkPM
k¼1

�k

lk

��� ���1d
l ¼ traceðWkLkA

�1DT
k Þ

d nk
:

kÞ Model �k ¼ lkDkAkD
T
k : �k ¼ 1

nk
Wk:
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Note that in models (d) and (i), estimation of the covari-
ance matrix has to be performed iteratively. The procedure
of alternating between E- and M-step is terminated after
the relative difference between successive values of l (mk,
Sk,pk,zik|y) are smaller than some threshold e.

APPENDIX B
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1 Milham MP, Banich MT (2005): Anterior cingulate
cortex: An fMRI analysis of conflict specificity and
functional differentiation. Hum Brain Mapp 25:
328–335.

2 Laird AR, McMillan KM, Lancaster JL, Kochunov
P, Turkeltaub PE, Pardo JV, Fox PT (2005): A com-
parison of label-based review and ALE meta-anal-
ysis in the Stroop task. Hum Brain Mapp 25:6–21.

3 Potenza MN, Leung HC, Blumberg HP, Peterson
BS, Fulbright RK, Lacadie CM, Skudlarski P, Gore
JC (2003): An fMRI Stroop task study of ventrome-
dial prefrontal cortical function in pathological
gamblers. Am J Psychiatry 160:1990–1994.

4 Milham MP, Banich MT, Barad V (2003a): Compe-
tition for priority in processing increases prefrontal
cortex’s involvement in top-down control: An
event-related fMRI study of the stroop task. Cogn
Brain Res 17:212–222.

5 Milham MP, Banich MT, Claus ED, Cohen NJ
(2003b): Practice-related effects demonstrate com-
plementary roles of anterior cingulate and prefron-
tal cortices in attentional control. NeuroImage
18:483–493.

6 Fan J, Flombaum JI, McCandliss BD, Thomas KM,
Posner MI (2003): Cognitive and brain consequen-
ces of conflict. NeuroImage 18:42–57

7 Mead LA, Mayer AR, Bobholz JA, Woodley SJ,
Cunningham JM, Hammeke TA, Rao SM (2002).
Neural basis of the Stroop interference task:
Response competition or selective attention? J Int
Neuropsychol Soc 8:735–742.

8 Milham MP, Erickson KI, Banich MT, Kramer AF,
Webb A, Wszalek TM, Cohen NJ (2002): Atten-
tional control in the aging brain: Insights from an
fMRI study of the Stroop task. Brain Cogn 49:277–
296.

9 Peterson BS, Kane MJ, Alexander GM, Lacadie
CM, Skudlarski P, Leung HC, May J, Gore JC
(2002): An event-related functional MRI study
comparing interference effects in the Simon and
Stroop tasks. Cogn Brain Res 13:427–440.

10 Norris DG, Zysset S, Mildner T, Wiggins CJ
(2002): An investigation of the value of spin-echo-
based fMRI using a Stroop color-word matching
task and EPI at 3 T. NeuroImage 15:719–726.

11 Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM,
Tracey I (2002): Imaging how attentionmodulates pain
in humans using functionalMRI. Brain 125:310–319.

12 de Zubicaray GI, Wilson SJ, McMahon KL,
Muthiah S (2001): The semantic interference effect
in the picture-word paradigm: An event-related
fMRI study employing overt responses. Hum
Brain Mapp 14:218–227.

13 Banich MT, Milham MP, Jacobson BL, Webb A,
Wszalek TM, Cohen NJ, Kramer AF (2001a):
Attentional selection and the processing of task-
irrelevant information: Insights from fMRI exami-
nations of the Stroop task. Prog Brain Res 134:459–
470.

14 Milham MP, Banich MT, Webb A, Barad V, Cohen
NJ, Wszalek TM, Kramer AF (2001): The relative
involvement of anterior cingulate and prefrontal
cortex in attentional control depends on nature of
conflict. Cogn Brain Res 12:467–473.

15 Steel C, Haworth EJ, Peters E, Hemsley DR,
Sharma TS, Gray JA, Pickering A, Gregory LJ,
Simmons A, Bullmore ET, Williams SCR (2001):
Neuroimaging correlates of negative priming.
Neuroreport 12:3619–3624.

16 Ruff CC, Woodward TS, Laurens KR, Liddle PF
(2001): The role of the anterior cingulate cortex in
conflict processing: Evidence from reverse Stroop
interference. NeuroImage 14:1150–1158.

17 Zysset S, Mueller K, Lohmann G, von Cramon DY
(2001): Color-word matching stroop task: Separat-
ing interference and response conflict. Neuro-
Image 13:29–36.

18 Banich MT, Milham MP, Atchley RA, Cohen NJ,
Webb A, Wszalek TM, Kramer AF, Liang ZP,
Wright A, Shenker J, Magin R (2001b): FMRI stud-
ies of Stroop tasks reveal unique roles of anterior
and posterior brain systems in attentional selec-
tion. J Cogn Neurosci 12:988–1000.

19 Banich MT, Milham MP, Atchley RA, Cohen NJ,
Webb A, Wszalek TM, Kramer AF, Liang ZP,
Barad V, Gullett D, Shah C, Brown C (2000): Pre-
frontal regions play a dominant role in imposing
an attentional ‘set: Evidence from fMRI. Cogn
Brain Res 10:1–9.

20 MacDonald III AW, Cohen JD, Stenger VA, Carter
CS (2000): Dissociating the role of the dorsolateral
prefrontal and anterior cingulate cortex in cogni-
tive control. Science 288:1835–1838.

21 Leung HC, Skudlarski P, Gatenby JC, Peterson BS,
Gore JC (2000): An event-related functional MRI
study of the Stroop color word interference task.
Cereb Cortex 10:552–560.

22 Carter CS, MacDonald III AW, Botvinick MM,
Ross LL, Stenger VA, Noll DC, Cohen JD (2000):
Parsing executive processes: Strategic vs. evalua-
tive functions of the anterior cingulate cortex. Proc
Natl Acad Sci 97:1944–1948.

r Meta Analysis of Functional Imaging Data r

r 191 r



23 Brown GG, Kindermann SS, Siegle GJ, Granholm
E, Wong EC, Buxton RB (1999): Brain activation
and pupil response during covert performance of
the Stroop Color Word task. J Int Neuropsychol
Soc 5:308–319.

24 Peterson BS, Skudlarski P, Gatenby JC, Zhang H,
Anderson AW, Gore JC (1999): An fMRI study of
Stroop word-color interference: Evidence for cin-
gulate subregions subserving multiple distributed
attentional systems. Biol Psychiatry 45:1237–1258.

25 Whalen PJ, Bush G, McNally RJ, Wilhelm S (1998):
The emotional counting Stroop paradigm: A func-
tional magnetic resonance imaging probe of the
anterior cingulate affective division. Biol Psychia-
try 44:1219–1228.

26 Bush G, Whalen PJ, Rosen BR, Jenike MA, McIner-
ney SC, Rauch SL (1998): The counting Stroop: An
interference task specialized for functional neuroi-
maging-validation study with functional MRI.
Hum Brain Mapp 6: 270–282.

r Neumann et al. r

r 192 r


